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ABSTRACT: A set of FORTRAN programs to
implement a multiple-trait Gibbs sampling algorithm
for (co)variance component inference in animal
models (MTGSAM) was developed. The MTGSAM
programs are available to the public. The programs
support models with correlated genetic effects and
arbitrary numbers of covariates, fixed effects, and
independent random effects for each trait. Any combi-
nation of missing traits is allowed. The programs were
used to estimate variance components for 50 replicates
of simulated data. Each replicate consisted of 50
animals of each sex in each of four generations, for 400
animals in each replicate for two traits. For MTGSAM,
informative prior distributions for variance compo-
nents were inverted Wishart random variables with

10 df and means equal to the simulation parameters.
A total of 15,000 Gibbs sampling rounds were
completed for each replicate, with 2,000 rounds
discarded for burn-in. For multiple-trait derivative
free restricted maximum likelihood (MTDFREML),
starting values for the variance components were the
simulation parameters. Averages of posterior mean of
variance components estimated using MTGSAM with
informative and flat prior distributions for variance
components and REML estimates obtained using
MTDFREML indicated that all three methods were
empirically unbiased. Correlations between estimates
from MTGSAM using flat priors and MTDFREML all
exceeded .99.
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Introduction

Estimation of variance components ( VC) has long
been important in animal breeding. Accurate esti-
mates of VC are important because prediction error
variances for predicted random effects (e.g., breeding
values) increase as differences between estimated and
true values of VC increase (Henderson, 1975;
Schaeffer, 1984). Currently, REML is considered the
method of choice for estimating VC (Meyer, 1990).
The use of REML in animal breeding has increased
dramatically due to availability of general purpose
programs such as DFREML (Meyer, 1988),
MTDFREML (Boldman et al., 1995), and VCE
(Groeneveld, 1994). The multiple-trait Gibbs sampler
for animal models ( MTGSAM) programs have been
developed to implement the Gibbs sampling ( GS)

algorithm for Bayesian analysis of a broad range of
animal models (Van Tassell and Van Vleck, 1995).
These programs expand the methods available for
statistical analysis of animal breeding data.

The objectives of this study were to derive and
present the theoretical results necessary to implement
the Gibbs sampler for a general multiple-trait animal
model and to compare posterior mean estimates
obtained using different prior distributions with those
obtained using REML for simulated data.

Methods and Materials

Gibbs Sampling and Bayesian Concepts

Gibbs sampling is a Monte Carlo numerical integra-
tion method that allows inferences to be made about
joint or marginal distributions, even if appropriate
densities cannot be explicitly formed (Geman and
Geman, 1984). The use of GS allows analysis of
Bayesian posterior distributions that had been com-
putationally intractable due to the numerical integra-
tion required to obtain those distributions. The GS
algorithm is applied by generating a realized value for

 by on May 18, 2010. jas.fass.orgDownloaded from 

http://jas.fass.org


MULTIPLE TRAIT GIBBS SAMPLER FOR ANIMAL MODELS 2587

each unknown parameter (considered a random varia-
ble in a Bayesian framework) in a model, in turn,
from the fully conditional distribution of that variable
with all other parameters in the model and the data
considered known. The cycle of generating each
parameter is repeated. Eventually, the Gibbs sampler
converges to the posterior distribution, and the values
drawn after that convergence are considered random
samples from the posterior distribution. The number
of rounds discarded before the values are considered
samples from the posterior distribution is usually
called the burn-in period. There are typically large
positive correlations between consecutive samples for
a parameter drawn from the Gibbs chain. Independent
samples of the parameters are usually needed for
posterior density estimation and can also be used for
estimation of Monte Carlo error. The number of
rounds between samples needed to obtain uncor-
related samples is called the thinning interval. The
Monte Carlo error can also be estimated using
correlated samples. Sorensen et al. (1995) describe
calculation of Monte Carlo error. The Monte Carlo
error is the error in parameter estimation due to the
number of samples used from the Gibbs chain. The
Monte Carlo error is inversely proportional to the
length of the Gibbs chain.

Gibbs sampling has been used for Bayesian infer-
ence in animal breeding problems in several applica-
tions, including VC estimation in sire models (Wang
et al., 1993), animal models (Wang et al., 1994b; Van
Tassell et al., 1995), and maternal effects models
(Jensen et al., 1994; Van Tassell, 1994). Gibbs
sampling has also been applied to Bayesian inference
about response to selection (Sorensen et al., 1994;
Wang et al., 1994a). Recently, GS has been extended
to Bayesian inference in threshold models for categori-
cal data (Albert and Chib, 1993; Sorensen et al.,
1995). Each of these cases involved development of
computer programs needed for the particular model.

It is important to note that likelihood inference can
be viewed as a special case of the more general
Bayesian inference. With normality, the posterior
distribution is simply the (frequentist) likelihood
function scaled by prior distributions of the unknown
parameters in the model. When a flat prior is used for
the parameters, then the posterior distribution is the
likelihood of the parameters given the data. A flat
prior distribution is one that attempts to represent a
lack of prior knowledge; in that case the prior
distribution is proportional to a constant. Gibbs
sampling can be applied characterizing both the
posterior distribution in a Bayesian inference and the
likelihood function in a frequentist inference (Tanner,
1993). Estimates of posterior means of VC with flat
prior distributions for fixed effects and variance
components correspond to the VC estimates from
integrated likelihood ( VEIL) as described by Gianola
and Foulley (1990).

Program Flexibility

The MTGSAM programs support a variety of
models. The model for each trait can include any
number of fixed and uncorrelated random effects. In
addition to the additive genetic effect (i.e., animal
effect), an additional correlated genetic effect (e.g.,
maternal genetic effect) can be included for each trait.
The programs support multiple trait models with
missing observations. The possible models correspond
to those allowed by the multiple-trait derivative-free
REML ( MTDFREML) programs. Like the
MTDFREML programs, the MTGSAM programs can
be used for sire models by considering the genetic
effect as a sire effect, and a sire-maternal grandsire
model can be fit by considering maternal grandsire
effect as the correlated genetic effect. The MTGSAM
programs generate the Gibbs samples for those models
and calculate estimates of posterior means of the
associated parameters.

Model Assumptions

In matrix notation, the mixed linear model equation
for the N × 1 observation vector, y, is:

y = Xb + Zu + e,

where b is the vector of fixed effects associated with
records in y by X, and u is the vector of random effects
associated with records in y by Z, and e is the vector of
random residual effects. Completing the model defini-
tion, assume

andE =



y
u
e







Xb
0
0




Var




y
u
e



 = .



ZSZ′ + R

SZ′
R

ZS
S
0

R
0
R




There is no way to generate covariance matrices

from the fully conditional distribution of the VC with
specific covariances restricted to zero. Therefore,
uncorrelated random and residual effects are grouped
by traits to impose zero covariances among effects in
order to implement the GS algorithm. The covariances
between effects in different groups are assumed to be
zero. The subdivision of uncorrelated random and
residual effects into groups usually corresponds to
groups of traits that are not observed on the same
animal, e.g., the effects on sex-limited traits such as
milk production and scrotal circumference. If zero
covariances are desired between two factors, then the
factors need to be considered as members of different
groups. The use of the term group refers only to the
concept of assigning random effects to different
categories for the sake of VC estimation and is
unrelated to the idea of genetic grouping.
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Let u′ = , where u0 corresponds to ...u0
′ u1

′ ug
′ 

the additive genetic effects, ui corresponds to the
uncorrelated random effects in group i for i > 0, and g
is the number of groups of uncorrelated random
effects. The vector u0 is sorted by animal within trait
and the traits ordered with direct genetic effects in
order for each trait followed by the additional cor-
related genetic effects for traits that have them. Then
G is a d0 × d0 matrix that describes the genetic
(co)variances among traits for an animal, where d0 is
the number of traits plus the number of traits with
correlated genetic effects. Let A be an n × n matrix
describing the covariance structure among genetic
effects within traits; typically A is the numerator
relationship matrix, and n is the number of animals.
The vector ui corresponds to random effects that are
uncorrelated with the genetic effects and the other
random effects (e.g., permanent environmental ef-
fects). The effects are sorted by level within the traits
that include that effect. Only random effects with the
same levels (i.e., coded by the same values) across
traits can be included in a group of effects with non-
zero covariances among those effects. Then Di is the di
× di matrix of (co)variances among the random effects
across traits in group i for an animal, where di is the
number of uncorrelated random effects in group i, i.e.,
the number of traits represented in group i. Let ni be
the number of levels in each of the di uncorrelated
random effects in group i. Based on the partitioned
form and the assumptions, the matrix S can be written
as

S = ,



( G ⊗ A)

0

0

g

⊕
i=1


⊗Di Ini








where ⊗ and ⊕ correspond to direct product and direct
sum operators, respectively (see Searle, 1982, for a
description of these operators). Let = G ⊗ A andS0

= ⊗ ; then S can be also written as S = Si.Si Di Ini

g

⊕
i=0

An animal may have multiple observations. The
residual effects are assumed to be uncorrelated for the
different records across the same animal, although
residual effects for traits within a record may be
correlated. If the data vector, y, is assumed to be
sorted by trait within record within animal, then R is
a block diagonal matrix

R = ,
q
⊕
i=1

Rj
*

where is an × matrix of (co)variances ofRj
* rj rj

residuals for the traits measured on record j, q is the

number of records, and is the number of traitsrj
observed for record j. Note that for an animal with all

traits measured , where is the ×=Rj
* r

⊕
i=1

Ri Ri ti ti

covariance matrix among residuals for group i of the
residual effects, is the number of traits in residualti
group i, and r is the number of groups of residual
effects.

Henderson’s mixed model equations ( MME)
(1984) simplify for many situations the calculation of
best linear unbiased estimators of b, b̂, and best linear
unbiased predictors of u, û. In general form the MME
are

=


X′ XR−1

Z′ XR−1
X′ ZR−1

Z′ Z +R−1 S–1




b̂
û

 .

X′ yR−1

Z′ yR−1



The equations will also be written as Cŝ = r.
Although R is of order equal to the number of records,
R is often assumed to be diagonal for single-trait
analyses, often , and block diagonal (blocks of orderIse

2

equal to the number of traits) for multiple-trait
analyses, so that calculations involving R−1 are easy.

The GS algorithm requires that the joint distribu-
tion of the parameters conditional on the data is
proper, i.e., that the distribution integrates to a finite
value. In some models and data structures the
integral of the likelihood is infinite, and application of
the Gibbs sampler to a model with flat priors may
yield incorrect results (Hobert, 1994). Even when the
integral of the likelihood is infinite, however, use of an
appropriate prior distribution will result in a model
with a proper posterior distribution. The posterior
distribution will always be proper when proper prior
distributions are used for all parameters in the model
(including fixed effects), and there are many cases
where flat or other improper priors can be used and
still result in a proper posterior distribution. Hobert
(1994) investigated this problem for the mixed linear
model with one random effect. The problem has not
been well characterized for more complex models,
especially multiple trait models. In cases where flat
prior distributions can safely be used for the VC, the
posterior mean estimates correspond to VEIL (Gia-
nola and Foulley, 1990) estimates for the parameters
and the posterior distributions of parameters cor-
respond to marginal likelihoods (Tanner, 1993). For
generality, the notation and derivations will be for the
Bayesian model.

Prior Distributions. To specify fully the Bayesian
model with unknown VC, additional assumptions
must be made. The MTGSAM programs were deve-
loped assuming flat prior distributions for the fixed
effects. The random effects are assumed to be nor-
mally distributed. For the genetic effects there will be
an additional assumption of a known covariance
structure corresponding to the numerator relationship
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matrix. Finally, the residual effects are assumed to be
distributed normally. These assumptions are those
used with most likelihood-based methods when these
methods are interpreted from the Bayesian point of
view. In addition, when VC are known, the posterior
distribution under these assumptions is multivariate
normal with the mean equal to b̂ and û and variance-
covariance matrix C−1 (Gianola and Fernando, 1986;
Gianola et al., 1990).

The animal and correlated genetic effects are
assumed to have non-zero covariances that can be
estimated for all trait combinations. Non-zero covari-
ances are allowed only among the same random effects
for different traits. In addition, the user of MTGSAM
can specify that some of these covariances are to be
restricted to zero by specifying additional groups of
effects.

Inverted Wishart ( IW) distributions are used as
prior distributions for the (co)variance components
mainly for computational simplicity. The IW prior
distributions for the matrix of (co)variance compo-
nents are assumed to be mutually independent. The
Wishart density describes the distribution of sums of
squares and cross-products of standard normal ran-
dom variables ( RV) (Odell and Feiveson, 1966), and
if B is a Wishart RV, then T = B−1 is an IW RV. In the
univariate case, this corresponds to an inverted chi-

square distribution. Although other prior distributions
could be used, the GS algorithm would be more
complex.

If T is distributed as an IW variable, in other words
T ∼ , n) , then the form of the IW distribution isIW(T0

,f (T| ,n) ∝ |TT0 |
− ( n+m+1)

1
2 × exp

tr(− )
1
2
T0

−1T−1 


for T, positive definite and n > m + 1,T0

where is the m × m scale parameter matrix and n isT0
the scalar shape, or degree of belief, parameter. The
mean of T is / (n − m − 1) (Johnson and Kotz,T0

−1

1972).
Let ( ) , ( ) , and ( ) be the scaleG0 ng D0i

ndi
R0j

nrj

(shape) parameters for genetic, group i of uncor-
related random, and group j of residual (co)variances,
respectively. In addition, let = − d0 − 1,ng

* ng

= − − 1, and = − − 1. In the MTGSAMndi

* ndi
di nri

* nri
ti

programs the scale matrix is calculated such that the
expected value of the prior distribution of the
(co)variance matrix is equal to the value entered by
the user. For example, for the genetic (co)variance
matrix, if the mean value specified by the user is G*,
then = .G0

−1 ng
*G*

Joint Posterior Density

Let = for i = 0, ..., γ, then = , where = . Similarly, = , whereui
′ 

...ui1
′ ui2

′ uidi

′ 
S0 {s0j,k} s0j,k

u0j

′ A−1u0k
Si {sij,k} sij,k

= , for i = 1, 2, ..., g. Further, define as the vector of residual effects for the traits in residual group i anduij
′ uik

ei,j

record j, then = where is the number of records represented in residual group i.Qi ∑
j=1

qi

ei,jei,j
′ qi

The joint posterior density, i.e., the density of the parameters given the data and the prior information, can be
written as the product of the prior distributions and the likelihood function. Then the joint posterior density is

f (b,u,G, , ,..., ,R|y, , , , ,..., , , , ,..., ,D1 D2 Dg ng G0 nd1
D01

ndg
D0g

nr1
R01

nrr
R0r)

∝ f × f × f (b) × f ×(y|b,u,R) (u|G, ,...,D1 Dg) (G|ngG0) ∏
i=1

g

×
f ( | ,Di ndi

D0i) ∏
i=1

r

f( | ,Ri nri
R0i)

∝ f × f × f × f × f × × .(y|b,u,R) ( |Gu0 ) ∏
i=1

g

( |ui Di) (b) (G| ,ng G0) ∏
i=1

g


f ( | ,Di ndi

D0i) ∏
i=1

r

f( | ,Ri nri
R0i)

.
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f (b,u,G, , ,..., ,R|y, , , , ,..., , , , ,..., ,D1 D2 Dg ng G0 nd1
D01

ndg
D0g

nr1
R01

nrr
R0r)

∝| × expR|−1/2 
−

1
2

′R(y − Xb − Zu)
−1

(y − Xb − Zu)

× | × exp ×G|−n/2 
−

1
2
u0

′ ( ⊗G−1 A−1)u0
 ∏

i=1

g
| × expDi|

− /2ni 
−

1
2
ui

′ ⊗Di
−1 Ini

ui



× |G × exp ×|
−

1
2( + +1ng d0 ) 




tr

 −

ng
*

2
G0G−1






∏
i=1

g 
| × expDi|

−
1
2( + +1ndi

di ) 



tr

−

n
di

*

2
D0i

Di
−1










× ∏
i=1

r 
| × expRi|

−
1
2( + +1nri

ti ) 


tr


 −

nri

*

2
R0i

Ri
−1










∝|G × exp|
−

1
2(n+ + +1ng d0 ) 

−
1
2

+ tru0
′ ⊗G( −1 A−1)u0 (ng

*G0G−1))
× ∏

i=1

g 
| × expDi|

−
1
2( + + +1ni ndi

di ) 
−

1
2
 + trui

′ ⊗Di
−1 Ini

ui
ndi

* D0i
Di

−1





× ∏
i=1

r 
| × expRi|

−
1
2( + + +1qi nri

ti ) 


tr


−

nri

*

2
R0i

Ri
−1










.× exp
−

1
2
(y − Xb − Zu)′R−1(y − Xb − Zu) [1]

An alternative form of the density is:

f (b,u,G, , ,..., ,R|y, , , , ,..., , , , ,..., ,D1 D2 Dg ng G0 nd1
D01

ndg
D0g

nr1
R01

nrr
R0r)

∝|G × exp|
−

1
2(n+ + +1ng d0 ) 

− tr
1
2 (( +ng

*G0 S0)G−1)

× ∏
i=1

g 
| × expDi|

−
1
2( + + +1ni ndi

di ) 
− tr

1
2

 +ndi

* D0i
SiDi

−1





× .∏
i=1

r 
| × expRi|

−
1
2( + + +1qi nri

ti ) 
− tr

1
2

 +nri

* R0i
QiRi

−1



 [2]

Fully Conditional Densities

A set of fully conditional densities is required to
implement GS. These densities are required for each
scalar element or subvector of elements in the vector
of parameters to be estimated. Each fully conditional
density corresponds to the distribution of the specific
parameter(s) conditional on all other parameters in
the model and the data; i.e., it is the distribution of
the specific parameter if the values of the remaining
parameters were known. The fully conditional densi-
ties can be derived from the joint posterior density,
i.e., from [1] or [2], by ignoring all terms not involving
the parameter(s) of interest, then treating the
parameters considered to be known as constants and
reorganizing terms retained into the density kernel of

a known distribution for the parameter of interest.
The kernel of a distribution is the part of the function
containing the random variable, which remains when
all constants are discarded.

Fixed and Random Effects. First, the conditional
distribution of the fixed and random effects,
s = [b′ u′]′, will be obtained. A useful result from the
form of the MME is

s′Cs = [b′ u′] 

X′ XR−1

Z′ XR−1
X′ ZR−1

Z′ Z +R−1 S–1




b
u


= s′W′ , whereWs + u′ uR−1 S−1

W = .[X Z]
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Then, the conditional distribution of the fixed and
random effects, s, can be written as (Gianola and
Fernando, 1986; Gianola et al., 1990):

f (s|G, , ,..., ,R,yD1 D2 Dg )

∝exp × exp
−

1
2
(y−Ws)′R−1(y−Ws)


− u′ u

1
2

S−1 

∝exp ,
−

1
2
( ′C(s−s̃) (s−s̃))

where

s̃ = W′ y.C−1 R−1

This is the kernel of a normal density, and therefore

s|G, ,..., ,R,y ∼ N .D1D2 Dg (s̃, C−1) [3]

Using results for the conditional multivariate normal
distribution, the fully conditional distribution for a

scalar or subvector element of s, where s′ = ,s1 s1
′ s2

′ 
is

| ,G, , ,..., ,R,y ∼ N ,s1 s2 D1 D2 Dg ( ,C11
−1( −r1 C12s2) C11

−1) [4]

and

C = .


C11
C21

C12
C22




Blocked Random Effects. The MTGSAM programs
use a blocked GS algorithm to generate all genetic
effects for an animal as well as associated uncor-
related random effects simultaneously. When the
posterior correlations of effects are large, the means of
fully conditional distributions for the RV involved may
be highly dependent, resulting in a limited practical
sampling range for that random variable given the
current value of a correlated variable. For example, for
dairy cattle data with multiple lactations recorded,
often a permanent environmental effect ( PE) is
included to account for non-genetic, animal-specific,
random effects. The PE levels would correspond to the
animal levels, that is, the level for animal identifica-
tion and PE effect would be coded in the same field of
the original data set. If the genetic and PE effects are
generated individually, then the range of one effect,
say PE, is limited by the current value of the genetic
effect. This in turn leads to the animal effect being
limited by the current value of the PE. As a result, the
consecutive samples of the same parameter may be
highly correlated, which reduces the efficiency and
rate of convergence of the GS algorithm. This
phenomenon is known as slow mixing, where the

mixing rate refers to the rate that the Gibbs sampler
moves through all of the potential values in the
distribution.

The MTGSAM programs for that case generate the
PE effects simultaneously with the genetic effects. In
general, the programs block and generate simultane-
ously any uncorrelated random effect that is coded in
the same column as an animal or correlated genetic
effect with the genetic effects. Generating correlated
variables in blocks should increase the mixing rate of
the Gibbs sampler and reduce the correlations among
samples drawn. This method reduces correlations
among the samples drawn, but, because not all
correlated variables are sampled simultaneously,
blocking may not completely eliminate the correla-
tions within a Gibbs chain (Liu et al., 1994; Van
Tassell et al., 1994).

A correlation among variables that are assumed to
be statistically uncorrelated can be induced through
the data structure, i.e., through the least squares part
of the equations. If we reconsider the dairy example,
genetic and PE effects are assumed to be uncorrelated,
leading to a block diagonal structure in the covariance
matrix, but for animals with records observed there
are non-zero elements that bridge the block-diagonal
structure; as a result there is a posterior correlation
among the genetic and PE effects for an animal. In
models with maternal genetic and PE effects, those
effects are blocked together, i.e., the maternal PE
effect is blocked with the maternal genetic effect
because those effects are correlated due to the data
structure. Previous results for a maternal effects
model applied to Simmental weaning weight data
support this concept, although the difference between
blocked and scalar algorithms was relatively small
(Van Tassell et al., 1994).

To derive the form of the fully conditional distribu-
tion for the block of effects, additional definitions are
needed. Let P be a permutation matrix such that

Ps = = ,



sPi
sP−i







si
s−i




where si are the random effects in the block, and s−i
are the remaining fixed and random effects. The
matrix P can be thought of as an identity matrix with
the order of the columns altered so that Ps contains
the same elements as s but in a different order. Then
application of a property of the conditional normal
distribution to the fully conditional distribution of the
fixed and random effects in [3] results in the fully
conditional distribution of the block of random effects:

| G, , ,..., ,R,y ∼ N ,si s−i D1 D2 Dg ( ,s̃i (PiCPi
′)−1) [5]

where

= .s̃i (PiCPi
′)−1( r−Pi PiCP−i

′ s−i)
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Although this form appears complex, it is simply a
precise representation of [4], where the permutation of
elements is shown here explicitly. The (co)variance
matrix is composed of the appropriate elements of the
coefficient matrix corresponding to the rows and
columns for the elements in the block, and the mean is
a function of that matrix and the right-hand sides for
the blocked effects adjusted for the off-diagonal
elements of the effects not generated in that block.
The adjustments to the right-hand sides are based on
the rows of the coefficient matrix for those blocked
elements with the columns removed for the elements
included in that block. The remaining matrix is
multiplied by the vector of current values for the fixed
and random effects not included in the block and
subtracted from the appropriate element.

Missing Data. To allow for missing traits, the
residual and uncorrelated random effects for missing
traits must be generated to calculate quadratic forms
for these effects and for generating residual
(co)variance matrices. There will only be missing
uncorrelated random levels when the same effect is
used in several traits, e.g., litter or PE. The missing
value is calculated using the same fully conditional
distribution as the effects that have observations, i.e.,

from [5]. The missing residuals are generated using
the conditional normal distribution, i.e., the residuals
are calculated for the observed traits and the missing
residuals are generated using GS based on the current
values of the residual (co)variances for that group. To
specify the form of the fully conditional distribution of
the missing residual effects, assume, without loss of
generality, the vector of residuals can be partitioned
as

= ,ei,j


em
eo




where is the subvector of missing residuals andem eo
is the subvector of residuals for observed traits. For
group i of residual effects, the residuals are dis-
tributed normally:

| ∼ N .ei Ri (0,Ri)
Let

= ;Ri


Rmm
Rom

Rmo
Roo




then, using the form of the conditional normal
distribution,

| ,s,G, , ,..., ,em eo D1 D2 Dg R,y ∼ N .( , −RmoRoo
−1eo Rmm RmoRoo

−1Rom) [6]

(Co)variance Matrices. The fully conditional distributions of the (co)variance matrices can be derived using
form [2] of the joint posterior distribution. The fully conditional distribution of the genetic (co)variance matrix is

f (G|s, , , ,..., ,G0ng D1 D2 Dg R,y) ∝ |G × exp .|
−

1
2(n+ + +1ng d0 ) 

− tr
1
2 (( +ng

*G0 S0)G−1)
This is the kernel of an IW density, so that

G|s, , ,..., ,R,yG0ng D1D2 Dg ∼ IW . ,n +( +ng
*G0 S0)−1

ng
 [7]

The fully conditional distribution for the matrix of (co)variances for each group of uncorrelated random effects is

f ( |s, , ,G, ,..., , ,..., ,R,yDi d0i
ndi

D1D2 Di−1 Di+1 Dg ) ∝| × exp .Di|
−

1
2( + + +1ni ndi

di ) 
− tr

1
2

 +ndi

* D0i
SiDi

−1


This is also the kernel of an IW density, so that

|s, , , , ,..., , ,..., ,R,yDi D0i
ndi

D1 D2 Di−1 Di+1 Dg ∼ IW .
 , + +ndi

* D0i
Si

−1
ni ndi


 [8]

The fully conditional distribution for the matrix of (co)variances for each group of residual effects is

f ( | , , ,s, , ,..., , ,..., , ,..., ,yRi ei R0i
nri

D1 D2 Dg R1 Ri−1 Ri+1 Rr ) ∝ | × exp .Ri|
−

1
2( + + +1qi nri

ti ) 
− tr

1
2

 +nri

* R0i
QiRi

−1


Again, this function is the kernel of an IW density so that
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| , , ,s, , ,..., , ,..., , ,..., ,yRi ei R0i
nri

D1 D2 Dg R1 Ri−1 Ri+1 Rr ~ IW .
 , + +nri

* R0i
Qi

−1
qi nri


 [9]

Implementation of the Gibbs Sampler

Using the fully conditional distributions, i.e., [4] to
[9], the GS algorithm used can be outlined as follows:

1. Input or calculate starting values for all variables.
a. Starting (co)variances supplied by the user

are used for those components. The starting
values correspond to the means of prior
distributions if using informative prior distri-
butions for the (co)variances.

b. Gauss-Seidel iteration using the starting VC is
used to calculate starting values for fixed and
random effects. The user specifies maximum
number of rounds of iteration and convergence
criterion.

2. Generate fixed effects from [4].
3. Generate genetic effects and blocked uncorrelated

random effects from [5].
4. Generate uncorrelated random effects not in a

block from [4].
5. Calculate residual effects for traits with observa-

tions, and generate missing residuals from [6].
6. Calculate quadratics for genetic effects, S0, from

A−1u0j.u0i

′

7. Generate G from [7].
8. Calculate quadratics for each group of uncor-

related random effects, Si, from uik.uij
′

9. Generate each Di from [8].
10. Calculate quadratics for each group of residual

effects, Qi, from .ei,jei,j
′

11. Generate each Ri from [9].
12. Repeat steps 2 through 11 many times.

Estimation of Posterior Means

The mean of a parameter is a useful and convenient
point estimate. There are two basic methods used by
MTGSAM to estimate the posterior means, depending
on the variable. The first is based on the average of
the conditional expected values of the parameter, and
the second is based on the average of the sampled
values. For variables for which it is possible, the mean
of the conditional expectation of the parameter is
used. The conditional expected value used in the
calculation corresponds to the expected value of the
fully conditional distribution for that parameter from
which the new value was sampled, i.e., conditional on
the values of the other parameters when that sample
was drawn. This form of the estimate is used when
possible because it is the Rao-Blackwell estimator; i.e.,
it is the minimum variance estimator. There are cases
in which the conditional expectation of the parameter
is not known, specifically, for functions of parameters.
These include phenotypic variance, correlations,

heritabilities (or other fractions of phenotypic vari-
ance), and linear combinations of fixed and random
effects (i.e., estimable or predictable functions). The
mean of the sampled values is used in that case. For
example, to calculate the mean of the difference
between two fixed effects, the observed difference
would be calculated in each round and that value
would be averaged.

Variance Components. The MTGSAM posterior
mean estimate for (co)variance components is based
on the expected value of the IW RV. Recall that if T ∼
IW(V,n) , then E(T) = V−1/ (n − m − 1). Therefore,
from [7], [8], and [9] the expected values for
(co)variance matrices for a given round of Gibbs
sampling are calculated as

E = ,(G| , ,S0 G0 ng)
+ng

*G0 S0

(n+ − −1ng d0 )

E = ,( | , ,Di Si D0i
ndi)

+ndi

* D0i
Si

( + − −1ni ndi
di )

and

E = .( | , ,Ri Qi R0i
nri)

+nri

* R0i
Qi

( + − −1qi nri
ti )

The mean of a (co)variance component is calculated
as the average of these expected values over the
length of the post burn-in chain.

Functions of Variance Components. Functions of
(co)variance components considered by MTGSAM
include the phenotypic (co)variances (sum of ap-
propriate genetic, uncorrelated random and residual
(co)variances), correlations, and fraction of pheno-
typic variance accounted for by a particular VC (e.g.,
heritability, fraction due to uncorrelated random
effects, or fraction due to residual effects). Because
the conditional distributions of these functions cannot
be written in closed form, MTGSAM calculates the
estimates of the posterior means for these parameters
as the means of the functions calculated using the
sampled (co)variance components in each post burn-
in round of GS.

Fixed and Random Effects. Recall that the fully
conditional distribution of a fixed or random effect is a
normal distribution. The posterior means for those
parameters are estimated in MTGSAM as the aver-
ages of the means of the normal distribution that the
parameters are sampled from in each post burn-in
round of GS.

Functions of Fixed and Random Effects. The
MTGSAM programs consider two different linear
combinations of fixed and random effects: those based
on a single effect and those based on multiple fixed or
random effects. A single element may be specified if a
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particular effect is of interest. An example of the
linear function might be a case in which the distribu-
tion of genetic effects for a specified group of animals
is wanted, but the amount of information generated
would be prohibitive for all animals (i.e., using the
option in the program to write sample information for
fixed and random effects is impractical). When the
function contains only one effect, the program uses the
parametric estimate of the mean of that function, i.e.,
the average of the means of the fully conditional
normal distributions. When the contrast includes
multiple effects, a nonparametric approach must be
used to estimate the mean. The mean is estimated as
the average of the sampled values, which is deter-
mined by calculating the linear combination of sam-
pled fixed and random effects specified by the function
after burn-in.

Gauss-Seidel Iteration

The MTGSAM programs use Gauss-Seidel iteration
( GSI) to obtain starting values for fixed and random
effects for GS based on the starting (co)variance
components. In addition, the programs can be used to
obtain solutions to the MME using GSI without GS.
Because of unique memory usage strategies, the
MTGSAM programs may be able to solve larger
systems of equations than many other general pro-
grams. The least squares part of the equations is half-
stored using sparse matrix storage. The inverse of the
genetic (co)variance matrix (i.e., = ⊗ ) isS0

−1 G−1 A−1

not explicitly added to the least squares portion of the
equations; instead, one copy of A−1 is full sparse
stored. The relative memory requirement for explicitly
adding the half-stored matrix to the least squaresS0

−1

coefficients is n2/2 to 1, where n is the number of
genetic traits (i.e., number of traits and correlated
genetic effects). Therefore, if n ≥ 2, then this storage
scheme will be more memory efficient than half-
storing the augmented equations. The algorithm used
for GSI is very similar to that used for GS; the update
to a variable or vector of variables in GSI is the same
as the algorithm to calculate the mean of the normal
distributions for fixed and random effects in GS.

Data Simulation

Data were simulated using a bivariate form of the
scheme described by Sorensen and Kennedy (1984)
and applied by Van der Werf and De Boer (1990).
Fifty replicates were generated; each contained 400
animals with 50 males and 50 females born in each of
four generations. Ten males were chosen in each
generation as sires of the next generation based on the
phenotypic value for trait one; all females were chosen
to be parents. Each male was mated to five females.
Each mating generated a male and a female progeny.
The simulation model included additive genetic and

residual effects for each trait. The genetic variance in
the base generation was 1.0 for both traits; the genetic
correlation was .3. Residual variance was 1.0 for both
traits; the residual correlation was .1.

Data Analysis

The model used for data analysis included a fixed
mean for each trait and random genetic and residual
effects. The relationships among all animals were
used to calculate the numerator relationship matrix.
Point estimates were obtained for the genetic and
residual variance for each trait and for the genetic and
residual covariances.

The MTGSAM programs were used to generate files
of samples and posterior estimates of variance compo-
nents. Two different sets of prior distributions were
used for the (co)variance components: flat prior
distributions and IW distributions with shape
parameters of 10 and a mean equal to the values used
in the simulations. The Gibbs sampler was run 15,000
rounds with the first 2,000 rounds discarded for burn-
in. The posterior mean was estimated for (co)variance
components, heritabilities, and correlations.

For comparison, the MTDFREML programs (Bold-
man et al., 1995) were also used to estimate variance
components. Estimates were obtained for (co)variance
components, heritabilities, and correlations. The ana-
lyses were restarted without the simplex information
at least three times; if the log-likelihood of the best
value changed by at least .01 between the last two
runs, then restarts were continued until the change
was less than .01.

Burn-in and Thinning Analyses

The burn-in period and thinning interval were
evaluated for two randomly chosen data sets using
both informative and flat prior distributions; i.e., four
Gibbs chains were evaluated. The analyses were based
on GS output for chains run 15,000 rounds, with the
first 2,000 rounds samples discarded as burn-in
period. The Gibbsit program of Raftery and Lewis
(1994), based on the algorithm described by Raftery
and Lewis (1992), was used to evaluate burn-in for all
(co)variance components and functions of VC. The
Gibbsit program was also used to calculate thinning
intervals to determine the frequency of retaining
sampled values so that those samples are uncorrelated
for each parameter. Lag correlations among samples
were also calculated to further evaluate thinning
intervals.

Monte Carlo error was estimated by calculating the
variance of the parameters sampled 50-rounds apart
and dividing this variance by 260, where 260 is the
number of thinned samples. The square root of this
value is an approximation to the standard deviation of
the error associated with the length of the Gibbs
chain.
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Table 1. Means and empirical standard deviations of estimates and correlations between estimates for 50
simulated populations using Gibbs sampling with informative priors (GS-I) and flat priors (GS-F) and REML

aG1, G2, R1, R2, P1, P2 are genetic effects for traits 1 and 2, residual effects for traits 1 and 2, and phenotypic measurements for traits 1
and 2, respectively; s2, s, and r represent variance, covariance, and correlation; are heritabilities for traits 1 and 2.andand h1

2 h2
2

bCorrelations between estimates for the two methods listed in the column heading.

Correlationsb

Means Standard deviations
GS-I
GS-F

GS-I
REML

GS-F
REMLParametera GS-I GS-F REML GS-I GS-F REML

sGl

2
1.029 1.028 .997 .178 .198 .194 .984 .985 .999

s ,Gl G2 .302 .295 .288 .133 .151 .147 .983 .986 .999
sG2

2
1.052 1.030 .998 .207 .229 .224 .944 .949 .996

h1
2

.513 .503 .500 .066 .072 .073 .971 .974 .998
rG1G2 .293 .297 .295 .124 .161 .154 .980 .990 .995
h2

2
.515 .496 .494 .079 .090 .089 .938 .944 .994

sR1

2
.963 .998 .988 .134 .139 .137 .970 .971 .999

s ,R1 R2 .095 .104 .103 .099 .105 .104 .985 .988 .999
sR2

2
.972 1.022 1.011 .169 .181 .179 .953 .955 .997

r ,R1 R2 .094 .101 .103 .106 .107 .106 .981 .984 .999
sP1

2
1.997 2.031 1.984 .160 .171 .166 .998 .998 .999

s ,P1 P2 .398 .401 .392 .140 .150 .147 .997 .998 .999
sP2

2
2.030 2.057 2.010 .176 .187 .182 .991 .993 .999

r ,P1 P2 .197 .195 .195 .064 .068 .068 .997 .998 .999

Results and Discussion

The Gibbsit program of Raftery and Lewis (1994)
recommended burn-in periods of 30 to 56 rounds. A
conservative burn-in period of 2,000 rounds was used.
Gibbsit calculated thinning intervals of 12 to 15
rounds. Results for the correlations among samples
indicated that the thinning intervals recommended by
Gibbsit were not large enough. Correlations for
samples drawn 50 rounds apart ranged from −.042 to
.093, with an average of .033. The correlations of most
parameters were less than .05 at a 50-round sampling
interval.

The maximums of square roots of the Monte Carlo
errors across the four chains evaluated were .015,
.018, .012, .009, .012, and .008 for the genetic
variances of traits one and two, genetic covariance,
residual variances for traits one and two, and residual
covariance, respectively. For heritabilities for traits
one and two, genetic correlation, and residual correla-
tion, the maximums of the square roots of the Monte
Carlo errors were .005, .006, .009, and .007. These
small Monte Carlo errors provide strong evidence that
the 13,000 rounds of post burn-in Gibbs sampling used
in this study were sufficient to obtain precise esti-
mates of posterior means.

Means and empirical standard deviations of
posterior mean estimates for GS using informative

prior distributions for VC ( GS-I) , GS using flat prior
distributions ( GS-F) , and REML are presented in
Table 1. Although theoretically all three methods are
biased, there is little evidence of systematic bias based
on the mean point estimates for the 50 replicates. The
means in some cases were statistically different from
the simulated values, but there were no systematic
differences. Significance was mainly due to the
relatively small variation in point estimates even
when based on only 50 populations with 400 animals.
It should be noted that, if prior distributions were
used with means different from the true values, then
the bias and mean squared errors of the estimates of
the posterior means would likely increase. Bias and
mean squared errors for posterior mean estimates
increased as the difference between the mean of the
prior distribution and the true value increased using a
similar univariate simulation (Van Tassell et al.,
1995).

Correlations among the parameter estimates are
also presented in Table 1. Although large, the
correlations between GS-I and GS-F and between GS-I
and REML were less than the correlations between
GS-F and REML. The biggest difference between the
GS-I point estimates and the GS-F or REML estimates
was the smaller variance of the estimates due to the
informative priors. This is not surprising, because this
estimate combines information from the prior distribu-
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Figure 1. Comparison of mean posterior estimates for
genetic variance of trait 1 using Gibbs sampling with
informative (GS-I) and flat (GS-F) prior distributions for
variance components. Regression of GS-I on GS-F
estimates is presented with a line with a slope of 1 for
comparison.

Figure 2. Comparison of mean posterior estimates for
genetic variance of trait 2 using Gibbs sampling with flat
prior distributions for variance components (GS-F) and
REML estimates of genetic variance for trait 2. Regres-
sion of GS-F on REML estimates is presented with a line
with a slope of 1 for comparison.

tion and from the data; the means of these two pieces
of information, in this case, should have similar
means. However, with the use of poor prior distribu-
tions, i.e., with means very different from the popula-
tion, the variance of the estimator can increase. As a
result of the reduced variance of the GS-I point
estimates, the slope of the line regressing GS-I on the
other methods was less than one (Figure 1). The
effect of the prior distribution is to “regress” the
sample information towards the mean specified by the
prior distribution. This “regression” is a function of the
shape parameter specified for the prior distribution
and the number of levels of the random effect (i.e.,
animals). This result is similar to the expression
given by Gianola et al. (1990) for the maximum a
posteriori ( MAP) estimate of the variance component:

= ,s2 +(n+2)s̃2 ns2

n + n + 2

where is the “data” variance, n is the shapes̃2

parameter for prior distribution, and is the scales2

parameter. This can be rearranged to

= + = a + ,s2 ns2

n + n + 2
(n + 2)

n + n + 2
s̃2 bs̃2

which in this form makes the regression more obvious.
This relationship does not necessarily hold for the
mean of the posterior distribution.

Estimates using GS-F and REML were very simi-
lar, as the correlations between estimates with the
two methods indicate. This similarity agrees well with
the form of the MAP estimator because the portion of
the estimate from the prior distribution is zero. A plot
of GS-F and REML estimates is presented in Figure 2,
where the similarity between the estimates can be

seen. The results from the simulated data suggest that
the likelihoods were relatively symmetric in these
populations, because the posterior mean and REML
estimates agreed quite well. However, results from
Van Tassell and Pollak (1994) indicate that even with
a much larger data set (5,440 records), mean (GS
posterior mean) and modal (REML) estimators can
be quite different; i.e., that assumption of normality
under the large sample properties of likelihood-based
inference may not be appropriate.

The MTGSAM programs are intended to be used by
those familiar with the concepts of GS, including
evaluation of the burn-in period, thinning interval,
and convergence. The programs simplify much of the
work required to use GS, but users must still make
certain that results obtained are sensible.

The MTGSAM programs are available through the
Internet or from the authors. The MTGSAM home
page is available via the Animal Geneticists Discus-
sion Group (AGDG) home page, which can be
accessed from links on the American Society of Animal
Science (ASAS) home page.

Implications

The MTGSAM programs implement the GS al-
gorithm for a wide variety of multiple-trait models,
allowing Bayesian analysis of (co)variance compo-
nents without approximations. The programs estimate
posterior means (up to Monte Carlo error) and
generate sampled values for (co)variances, correla-
tions, heritabilities, fixed and random effects, and
linear combinations of fixed and random effects.
Posterior distributions can be estimated using the
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samples generated by the programs. Gibbs sampling
may allow for parameter estimation for problems that
were not possible with a likelihood-based analysis.
These situations include the use of larger data sets or
more complex models.
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